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Selected Answers to Problem Set #2

3-14: The key to this problem is to recognize that each attempted sale is viewed as independent of the others —

that is, the probability on each is 20%, and does not vary if the salesperson is more or less successful on other

attempts.

1. Since the sales are independent, the probability of not making a single sale is 80%. Then, the probability

of not making any sales in 12 attempts is

0.8×0.8×·· ·×0.8 = (0.8)12 = 0.0687 ≈ 7%.

(Notice how this is an application of the binomial distribution introduced in chapter 4.)

2. Since the probability of making at least one sale is the complement of not making any sales, this prob-

ability is approximately 1−0.07 = 0.93, or 93%.

3. Saying the salesperson has roughly a 93% chance of making a sale on any one day is analogous to

saying that the salesperson makes at least one sale 93% of the time. Therefore, in a 200 day period,

the salesperson should make at least one sale on 200×0.93 = 186 of those days. (Notice that this too is

an application of the binomial distribution, although here π = 0.93 and n = 200, whereas π = 0.8 and

n = 12 in part a.)

3-18: This problem is very much like the example we did on the board in class, with the mixture of red and black

balls in an urn.

1. Initially, there is a 6 in 10 chance of drawing a good light bulb (event G1; Pr(G1) = 6
10 ). The probability

of drawing two good bulbs can be found via the rule for conditional probability: it is Pr(G1 ∩G2) =
Pr(G2|G1)·Pr(G1). Since the first light bulb is not replaced, Pr(G2|G1) = 5

9 . Thus, Pr(G1∩G2) = ( 6
10

)·( 5
9

)=
1
3 . (Notice how it is usually easier to solve this type of question with fractions instead of decimals.)

2. Continuing this line of reasoning, the probability that the third is good is 4
8 : of the eight remaining

bulbs, four are good, so you have a 4 in 8 chance of picking one of them. Symbolically, Pr (G3|G1∩G2) =
4
8 = 1

2 . Then, not replacing any of the first three bulbs, the probability of choosing a fourth good bulb is
3
7 . And so the probability of choosing a fifth good bulb — conditional on choosing good bulbs for the

first four — is 2
6 . Now the question asks the probability that the next three bulbs are good, given the

first two are good. It is simply the product of the three fractions in the preceding sentences of this part:( 4
8

) · ( 3
7

) · ( 2
6

)= 1
14 ≈ 7%. In symbols, this can be written as Pr(G5 ∩G4 ∩G3|G1 ∩G2). We could write out

the tree diagram for this problem (it would be rather large), but hopefully the logic of the problem is

clear enough.

3. If we start all over again, we will need to calculate the probability of choosing 5 good bulbs without

replacement: Pr(G5∩G4∩G3∩G2∩G1) . While this may seem imposing, it is not — and we already have

all the pieces for the answer! Recall the rule for conditional probability is Pr(A ∩B) = Pr (B |A) ·Pr (A).
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Now define one compound event A =G2∩G1, and a second compound event B =G5∩G4∩G3. Applying

the above formula, we see that:

Pr(G5 ∩G4 ∩G3 ∩G2 ∩G1) = Pr(A∩B)

= Pr(B |A) ·Pr(A)

= Pr(G5 ∩G4 ∩G3|G2 ∩G1) ·Pr(G2 ∩G1)

=
(

1

14

)
·
(

1

3

)
= 1

42
≈ 2.4%.

While this might seem like a “trick,” it is nothing of the sort! Rather, it is a straight-forward (if not ob-

vious) application of the definitions of conditional probability and compound events. If you try divide

the compound event G5 ∩G4 ∩G3 ∩G2 ∩G1 in a different way, and calculate the corresponding proba-

bilities, you should still get the same answer. (Try it!)

A number of problems in statistics can be solved by finding convenient (and occasionally clever) ways

to re-write the problem such that more simple manipulation and/or calculation results. This is a skill

that can be learned, but it takes a fair bit of practice!

3-38: The easiest way to answer this question is to draw a tree diagram. Below I provide intuitive and mathematical

answers; you should check that they match your tree diagram and come see me if you have any questions.

Let’s start by figuring out what information is given to us. We’ll use the following notation:

T = “guilty” on lie detector test

T = “innocent” on lie detector test

S = stole from the company

S = did not steal from the company

Then, we know that Pr(T |S) = 0.9 and Pr(T |S) = 0.9 as well. That is, given that we knew whether past workers

were guilty or not, the lie detector test correctly determined their innocence or guilt 90% of the time in the

past. We also are told that Pr(S) = 0.05.
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1. If a worker is fired, he or she must have failed the test, so we condition on the event T . The probability

of being innocent but failing the test can be found through Bayes’ Rule:

Pr(S|T ) = Pr(S ∩T )

Pr(T )

= Pr(S ∩T )

Pr(S ∩T )+Pr(S ∩T )

= Pr(T |S)Pr(S)

Pr(T |S)Pr(S)+Pr(T |S)Pr(S)

= (0.1)(0.95)

(0.1)(0.95)+ (0.9)(0.05)

= 0.095

0.095+0.045
≈ 0.679.

Thus, 68% of those fired were innocent! What happened? Looking closely at the values in the numerator

and denominator should clarify the issue: most people are innocent — in fact, 95% of them. But 10%

of these innocent people will nonetheless fail the lie detector test. Hence if the firm started with 1000

workers, 95 innocent workers would be fired. On the other hand, of the 5% of the workers who were

guilty, 90% were “found out” and fired. Thinking again of an initial 1000 workers, only 50 stole and 45

of them were fired. Since so few people stole in the first place, and the since the lie detector test is not

especially accurate, many more innocent people in total would be fired than guilty people. Thus, as a

share of the total group of people fired, the proportion who are innocent is relatively large.

2. For those workers not fired (i.e. event T ), we can calculate the proportion who actually are guilty:

Pr(S|T ) = Pr(S ∩T )

Pr(T )

= Pr(S ∩T )

Pr(S ∩T )+Pr(S ∩T )

= Pr(T |S)Pr(S)

Pr(T |S)Pr(S)+Pr(T |S)Pr(S)

= (0.1)(0.05)

(0.1)(0.05)+ (0.9)(0.95)

= 0.005

0.005+0.855
≈ 0.0058.

In other words, less than 1% of those not fired have stolen from the company. So most of the guilty

people have in fact left the firm, but at the cost of losing a large number of innocent people as well —

not to mention possibly risking some law suits.
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3-42: It might be easiest to answer this question by drawing a probability tree as well. Here is one version of what

it might look like: consider the three men each randomly given a hat in sequential order. The first man thus

has a 1
3 chance of getting his own hat, and a 2

3 chance of getting one of the other two. If the first man actually

gets his own hat, then of the two remaining hats there is a 1
2 chance the other two will also get their hats

(which we shall denote as “case 1”), and a 1
2 chance they will get each other’s hat (“case 2”).

In the lower branch, if the first man does not get his hat, then at least one other person also will not get his

hat (because the first man is holding it). So there is a 1
2 chance that one of the other two men will in fact still

get his hat (“case 3”), and a 1
2 chance that none of the men end up with their respective hats (“case 4”).

Notice that the correctly drawn tree has only two “levels,” not three: once the first two hats have been allo-

cated, there is no third choice (third set of branches) for the final individual. He simply gets the hat that is

remaining.

1. The probability that no man gets his hat is case 4, along the lower branch. The probability of this

occurring is
( 2

3

)( 1
2

)= 1
3 .

2. There are two cases in which exactly one man gets the right hat. One is case 2, in which only the first

man gets his hat, which occurs with probability
( 1

3

)( 1
2

) = 1
6 . The other is case 3, in which one of the

two remaining individuals gets his hat. This event occurs with probability
( 2

3

)( 1
2

)= 1
3 . Thus, the chance

that exactly one man ends up with his own hat is 1
6 + 1

3 = 1
2 .

3. The probability that exactly two men will end up with the correct hats is, intuitively, zero. There are

only three hats: if two men have their hats then so must the third, and if one man does not have the

right hat then another is holding this person’s hat — which means a second must not have the right hat

either. So this event is the null set, and has probability zero.

4. All three men end up with the right hat in case 1, which occurs with probability
( 1

3

)( 1
2

)= 1
6 .

Notice that 1
3 + 1

2 +0+ 1
6 = 1, so we have defined probabilities for the full sample space.
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