Economics 300-01: Quantitative Methods in Economics
 Wesleyan University, Fall 2007
 Summary of Formulas for Midterm \#1

1. $\mathbf{9 5 \%}$ Confidence interval for π, the population proportion:

$$
\pi=P \pm 1.96 \sqrt{\frac{P(1-P)}{n}},
$$

where P is the sample proportion.

2. Descriptive Statistics:

(a) Range $=\max \left(X_{i}\right)-\min \left(X_{i}\right)$
(b) IQR $=75 \%$ ile observation of $X_{i}-25 \%$ ile observation of X_{i}
(c) Median $=50 \%$ ile observation of X_{i}
(d) Sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
(e) Sample variance: $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n}\left(X_{i}\right)^{2}-n \bar{X}^{2}\right)$
(f) Sample standard deviation: $s=\sqrt{s^{2}}$

3. Probability:

(a) Union: $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
(b) Complement: $\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$
(c) Conditional probability (Intersection): $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)$
(d) Mutual exclusivity: $\operatorname{Pr}(A \cap B)=0$
(e) Independence: $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$
(f) Bayes theorem:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A \cap B)+\operatorname{Pr}(\bar{A} \cap B)}
$$

4. Univariate Probability Distributions

(a) Discrete Random Variables:

- $\operatorname{Pr}(X=x)=p(x), \quad \sum_{x} p(x)=1$
- Population mean: $\mu=\sum_{x} x p(x)=\mathrm{E}[X]$
- Population variance: $\sigma^{2}=\sum_{x}(x-\mu)^{2} p(x)=\sum_{x} x^{2} p(x)-\mu^{2}=\mathrm{E}\left[X^{2}\right]-\mu^{2}$
- Population standard deviation: $\sigma=\sqrt{\sigma^{2}}$
- $\mathrm{E}[g(x)]=\sum_{x} g(x) p(x)$
(b) Continuous Random Variables:
- $\operatorname{Pr}(a<X<b)=\int_{a}^{b} p(x) \mathrm{d} x, \int_{-\infty}^{+\infty} p(x) \mathrm{d} x=1$
- Population mean: $\mu=\int_{-\infty}^{+\infty} x p(x) \mathrm{d} x=\mathrm{E}[X]$
- Population variance: $\sigma^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} p(x) \mathrm{d} x=\mathrm{E}\left[X^{2}\right]-\mu^{2}$
- Population standard deviation: $\sigma=\sqrt{\sigma^{2}}$
- $\mathrm{E}[g(x)]=\int_{-\infty}^{+\infty} g(x) p(x) \mathrm{d} x$
(c) Linear Trasformations (discrete or continuous):
- If $Y=a+b X$, then
- $\mathrm{E}[Y]=\mu_{Y}=a+b \mu_{X}=a+b \mathrm{E}[X]$
- $\sigma_{Y}^{2}=b^{2} \sigma_{X}^{2}, \quad \sigma_{Y}=|b| \sigma_{X}$

5. Binomial Distribution: $X \sim \mathrm{~B}(n, \pi)$

(a) Probability density function:

$$
p(x)=\binom{n}{x} \pi^{x}(1-\pi)^{n-x}=\frac{n!}{x!(n-x)!} \pi^{x}(1-\pi)^{n-x}, \quad x=0,1, \ldots, n
$$

(b) Mean: $\mu=n \pi$
(c) Variance: $\sigma^{2}=n \pi(1-\pi)$
6. Normal Distribution: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
(a) Probability density function:

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty
$$

(b) Mean: $\mathrm{E}[X]=\mu$ (known)
(c) Variance: $\mathrm{E}[X-\mu]^{2}=\sigma^{2}$ (known)
(d) Standard Normal Random Variable:

- $Z=\frac{X-\mu}{\sigma} \sim \mathrm{N}(0,1)$
- $\operatorname{Pr}(a<X<b)=\operatorname{Pr}\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)$
- $p(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(z)^{2}}, \quad-\infty<z<\infty$

7. Multivariate Probability Distributions (discrete)

(a) Joint distribution: $\operatorname{Pr}(X=x \cap Y=y)=p(x, y)$
(b) Marginal distributions:

- $\operatorname{Pr}(X=x)=\sum_{y} p(x, y)=p(x)$
- $\operatorname{Pr}(Y=y)=\sum_{x} p(x, y)=p(y)$
(c) Independence: $p(x, y)=p(x) p(y)$
(d) Conditional Probability:
- $\operatorname{Pr}(Y=y \mid X=x)=\frac{p(x, y)}{p(x)}=p(y \mid x)$
- $\operatorname{Pr}(X=x \mid Y=y)=\frac{p(x, y)}{p(y)}=p(x \mid y)$
(e) Conditional Mean:
- $\mathrm{E}[Y \mid X=x]=\sum_{y} y p(y \mid x)$
- $\mathrm{E}[X \mid Y=y]=\sum_{x} x p(x \mid y)$
(f) $\mathrm{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p(x, y)$
(g) Covariance:

$$
\begin{aligned}
\sigma_{X Y} & =\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) p(x, y)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sum_{x} \sum_{y} x y p(x, y)-\mu_{X} \mu_{Y}=\mathrm{E}[X Y]-E[X] E[Y]
\end{aligned}
$$

(h) Correlation: $\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$
(i) Linear Trasformations:

- If $W=a+b X+c Y$, then
- $\mu_{W}=a+b \mu_{X}+c \mu_{Y} \quad \Longleftrightarrow \quad \mathrm{E}[W]=a+b \mathrm{E}[X]+c \mathrm{E}[Y]$
- $\sigma_{W}^{2}=b^{2} \sigma_{X}^{2}+c^{2} \sigma_{Y}^{2}+2 b c \sigma_{X Y}$

